2003 DoD Maintenance Symposium & Exhibition: Transferring Technology to Improve Maintenance Processes

Update on National Center for Manufacturing Sciences (NCMS) and the Commercial Technologies for Maintenance Activities (CTMA) Program

Chuck Ryan, Vice President, Technology

chuckr@ncms.org 734-995-4905

Flow of Presentation

- Who is NCMS
- What is the CTMA Program
- Ongoing and Emerging Projects
- Process for New Projects
- How to Participate

NCMS Mission

The NCMS mission is to build the global competitiveness of its manufacturing industry partners.

This is NCMS

- Organized under the National Cooperative Research Act of 1984; formed in 1986
- Largest cross-industry collaborative R&D consortium in North America
- Only consortial effort in the U.S. devoted exclusively to manufacturing technologies, process, and practices
- More than 17 years of experience in the formation and management of complex multipartner collaborative R&D programs

Who we are...

Edypse International Corporation

ThyssenKrupp

GENERAL PATTERN COMPANY

We Deliver....

- Technology solutions
- Strategic partnerships
- Access to funding sources
- Neutrality
- Program management expertise
- Business practice solutions
- Knowledge capture & e-learning solutions
- Networking opportunities

Who we are- a full complement of program support capabilities

- Program Management
- Finance and Accounting
- Contract Administration
- Legal
- Communications & Public Relations
- Management Information Systems
- Electronic Collaboration

NCMS Program Areas

- Government Partnerships
 - Commercial Technologies for Maintenance Activities (CTMA)
 - Environmental projects with EPA
 - R&D Joint Ventures through NIST ATP
- Manufacturing Trust
- Knowledge Solutions Division

Commercial Technologies for Maintenance Activities (CTMA)

- Identify, form, launch and deploy new projects coupling the needs and strengths of commercial industry with the DoD's maintenance, repair and remanufacturing facilities
- Focus on reducing overall costs and increasing readiness
- Cooperative Agreement between NCMS and the Office of the Secretary of Defense
- DoD-industry co-funding on a 2:1 match basis
- http://ctma.ncms.org

DoD Participants

- Tobyhanna Army Depot (AD)
- Corpus Christi AD
- Red River AD
- Anniston AD
- Fort Richardson, Fort Wainwright
- Norfolk Naval Shipyard (NSY)
- Portsmouth NSY
- Pearl Harbor NSY
- Puget Sound NSY
- Marine Corps Maintenance Center Albany
- Marine Corps Maintenance Center Barstow

- Naval Air Depot North Island (NADEP)
- NADEP Jacksonville
- NADEP Cherry Point
- OC- Air Logistics Center (ALC)
- OO- Air Logistics Center (ALC)
- WR-ALC
- Elmendorf AFB
- Naval Submarine Base- Kings Bay
- Naval Submarine Base- Bangor
- Naval Undersea Warfare Center, Keyport
- Naval Surface Warfare Center, Crane

CTMA Ongoing Projects

- Isotropically Conductive Adhesives
- OptiCam/IPOMX
- Flat Wire Deposition Process
- Laser Decoating Process for Helicopter Blades
- Process Substitution for Composite Repairs
- Portable Thermal Spray Booth Equivalency Unit
- Laser Shot Peening for Life Cycle Increase
- Enhanced Wiring Integrity
- Next Generation Inspection Systems
- Maintenance Mentoring System

- Near Dry Machining of Aluminum
- Damage Wear Assessment of Rotating Equipment
- Laser Engineered Net Shaping
- Rapid Manufacturing and Repair
- High Throughput Production Processing
- Retrograde Part Identification
 Using 2nd Generation Permanent
 Marking Techniques
- E-Collaborative Maintenance
- High Density Chip-on-Board
- Alternative Air Pollution Control Systems
- LAV Life-Cycle Logistics Support Tool

3rd Stage Turbine Rotor Repair

Copyright - All Rights Reserved

CTMA LENS Project Team Depot Briefing

Anniston Army Dopot Estimated Cost Savings

Inconel 625 - 15 Min

Collaboration that works.

Fourth (4th) Stage Turbine Rotor

ITEM #3 Second (2nd) Stage Nozzle

ITEM #4 Compressor Stator 1st L.P.

LASER ENGINEERED NET SHAPING (LENS) - ESTIMATED PER YEAR COST SAVINGS												
ITEM	PART	MATERIAL	PART NUMBER	NI	EW PART			SAVINGS PER PART		PARTS REPAIRED PER YEAR	SAVINGS PER YEAR	
1	Third (3rd) Stage Turbine Rotor	M3610C/Inconel 713LC	12271565	S	8,297	\$	2,000	\$	6,297	230	\$	1,448,416
	Fourth (4th) Stage Turbine Rotor	M3610C/Inconel 713LC	12281566	S	5,485	\$	2,000	\$	3,485	230	\$	801,529
3	Second (2nd) Stage Nozzle	M3602/Inconel 713C	12286886	S	6,032	\$	2,250	\$	3,762	600	\$	2,269,140
4	Compressor Stators (H.P. and L.P.)			sa.c		es es			100		SEC.	
	1st L.P.	AMS 5510/321 Stainless	12302430	\$	943		341	9			\$	106,759
	2nd L.P.	AMS 5510/321 Stainle	12 6 4		TITE	5	3.	P	870	175	\$	152,264
	3rd LP.	A Mails & State A	ARDAF		61U	\$	300	\$	310	175	\$	54,304
	4th L.P.	A ST. TO B. Inless	12286161	S	611	\$	300	\$	311	175	\$	54,495
	5th L.P.	AMS 5510/321 Stainless	12302429	S	701	S	300	\$	401	175	\$	70,091
	1st H.P.	AMS 5504/410 Stainless	12286257	S	604	S	300	\$	304	175	\$	53,155
	2nd H.P.	AMS 5504/410 Stainless	12286261	S	1,188	\$	300	\$	888	175	\$	155,377
	3rd H.P.	AMS 5504/410 Stainless	12286266	S	575	S	300	\$	275	175	\$	48,038
	4th H.P.	AMS 5504/410 Stainless	12286568	S	1,893	\$	300	\$	1,593	175	\$	278,782
5	Fourth (4th) Stage Seal Runner	AMS 5662/Inconel 718	12286490	S	319	S	200	\$	119	600	\$	71,268
- 37						76		7	77			

28,395 \$

19,245

9,150 \$

5,563,617

HiThru Initial Results

NC programming/machining times comparing new HiThru methods, with conventional methods.

Part Picture	Part	Programn						
rait ricture	Name	Conventional	HiThru	Conve	ntional		n L	
id	wr2005	80 to 120 hrs	7 hrs	HiThru Conventio 7 hrs no de			V5-2000	
						Set10	0:31	
4						Set 20	0:23	
				9		Total	0:54	
							(h:mm)	
	sik05	45 to 75		Hermle	3-axis	CinMach	V5-2000	
00				et10	0:46	Set10	0:47	
Jan Day		inu	"VIGO.	Set20	1:22	Set 20	0:22	
			1110	Set30	2:05	-	-	
		45 to 75 hs		Total	4:13	Total	1:09	
	sik06	45 to 75 hs	6 hrs	Makino	4-axis	CinMach	V5-2000	
2007.		•		Set10	0:14	Set10	0:36	
				Set20	2:05	-	-	
				Set30	0:03	-	-	
>				Total	2:32	Total	0:36	
	sik09	45 to 75 hrs	12 to 19 hrs	Makino	4-axis	CinMach V5-2000		
10				Set10	0:06	Set10	0:29	
RAIL				Set20	1:06	Set 20	0:15	
40				Set30	0:04	-	-	
				Total	1:18	Total	0:44	

Rapid Prototyping Technology Advancement - \$1,000,000/year Savings Potential TRIDENT Submarine Tow-Point Cable Conn. (OK-542)

Problem/Challenge:

Consistent failure of critical Tow Point Connector Cable due to design flaw and material degradation

High cost and complexity to replace

Solutions/Results:

NAWCWPNS and Pratt & Whitney teamed to deliver a rapid prototype tool in 14 days

NAWCWPNS prepared an STL file from DOD's JEDMICS system Pratt & Whitney built the tool using the stereolithography process

TRF created several injection mold prototypes with a variety of materials to find optimal solution

Emerging CTMA projects

- Rapid Manufacturing using Precision Metal Origami
- Coating Removal & Surface Prep
- Safety Line Track Manufacturing Process
- Inspection and Repair Preparation Cell for Radomes (IRPC)
- Six Sigma Product Quality
- Automated Test Equipment Test Program Set Migration System
- Automated Test Equipment Synthetic Instrumentation Insertion
- Refurbishing and Extending Sealant Life
- Friction Stir Welding
- Selective Galvanizing by Cold-spray Deposition
- Heat Transfer Classification for Production Tooling and Composite Repairs

CTMA Project Launch Criteria

- Begins with a concept (~5 pages long)
- Joint Industry/DoD interest and needs
 - Hard deliverables, direct impact on manufacturing shop floor
- Cost/Benefits summary sketched out
 - Quantifiable
- Participant roles defined
- Letter of endorsement from base command
- Submission of concept to Pentagon (Office of Secretary of Defense)
- 10 day turnaround for approval...

Hurdles for New Project Ideas

What new technology is being developed and implemented?

- Not a mechanism for circumventing DoD procurement process.

- Is there cross-service involvement?
 - For broader dissemination of technology
- Is there sufficient industrial interest?
 - Greater than 2:1 cost share

Communications and Networking

- CTMA Website (http://ctma.ncms.org)
- The CTMA Connector Newsletter
- CTMA Working Symposium on Sustainment: "A Practical Roadmap to Manufacturing and Repair", Emory Conference Center Hotel, Atlanta, GA 30 March – 1 April

NCMS - CTMA

Thank You!

Questions?

